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Abstract

A continuum ®nite element technique is adopted to study electronic properties of submicron electronic devices where

function hinges on quantum mechanical e�ects. Of particular interest is the in¯uence of mechanical strain on con®ned

electronic states. The steady state Schr�odinger equation, which governs the electronic behavior of such devices, is

modi®ed to include the potential induced by a strain ®eld which is present as a consequence of the fabrication. The

governing equation is cast in a variational form, and it is discretized on a standard ®nite element mesh which is more

re®ned in regions where large quantum mechanical wave function gradients are expected. Multiple energy bands and

three-dimensional structures can be considered, and e�ects including strain enhanced charge con®nement and strain

induced energy band mixing are studied. As examples, a Ge [5 0 1] faceted island, or quantum dot, on a Si substrate and

a Ge v-groove quantum wire on a Si substrate are considered. The technique is used to determine size ranges in which

these devices are expected to be most useful. The nonuniform mismatch strain ®eld in the structures is found to a�ect

the energies of experimentally accessible con®ned states and in some cases to enhance quantum mechanical con®ne-

ment. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study and characterization of semiconductor quantum devices has led to new problems and issues in
continuum solid mechanics. Of particular interest is the class of devices that are composed of combinations
of lattice mismatched materials. These material combinations, such as SixGe1ÿx=Si and InxGa1ÿxAs=GaAs,
where x indicates the fractional content of alloying material, are selected primarily on the basis of their
electronic properties and to some extent for convenience of processing, but high stresses induced by the
constraint of heteroepitaxy often lead to defects or other undesirable mechanical e�ects. Even in devices
free of mis®t dislocations, the strain induced by lattice mismatch can strongly a�ect electronic properties.
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However, this e�ect has not been thoroughly studied, particularly in submicron sized structures in which
quantum mechanics governs the device properties and in which strains are highest and most nonuniform.

In order to analyze strain e�ects in semiconductor quantum structures, it is necessary to adopt a model
for electronic properties. Simple quantum mechanical models have long been available for describing the
electronic properties of semiconductor devices based on the transport and con®nement of single charge
carriers. The study of quantum dots and quantum wires has renewed the interest in these models. The
e�ects of uniform, coherent strain on electronic properties have also been well understood for many years.
Recently, e�ects of mismatch induced nonuniform strain in semiconductor devices have been identi®ed
experimentally by Zaslavsky et al. (1995) and Aky�uz et al. (1998), and there have been some attempts to
model strain e�ects in quantum dots and quantum wires; see for example, Grundmann et al. (1995), Pryor
(1998), Williamson et al. (1998), or Zunger (1998). Most work has been based on highly accurate but
computationally intensive atomistic modeling.

While linear elastic strain in lattice mismatched semiconductor heterostructures is simple to characterize
using standard structural analysis ®nite element packages, the use of the ®nite element method is very
limited outside the ®eld of solid mechanics. However, the simple quantum mechanical model governing the
steady state behavior of single charge carriers in these semiconductor structures, based on the Schr�odinger
equation, is ideally suited for solution by means of the ®nite element method. Multiple coupled energy
bands can be treated, as well as the e�ects of bimaterial interfaces and nonuniform strain e�ects.

Section 2 presents a well known, simple quantum mechanical model for electronic properties in semi-
conductor structures that has been modi®ed to include the e�ects of strain. A ®nite element technique for
solving the quantum mechanical problem is derived in the following section. Then, applications of the
approach to the analysis of realistic SixGe1ÿx quantum dots and quantum wires are presented and discussed.
The e�ects of device size on quantum mechanical con®nement and of nonuniform mismatch strain on
con®nement energies are considered.

2. Quantum mechanical model

The operation of semiconductor quantum devices is based on the con®nement of individual electrons
and holes in one spatial dimension (quantum wells), two spatial dimensions (quantum wires) or three
spatial dimensions (quantum dots). Because quantum dots and wires are operated at extremely low tem-
peratures and voltages, and because the length scales involved are very small, the e�ects of the scattering of
electrons and holes can usually be neglected. Thus, it is possible to model the operation of these devices in
terms of the ballistic transport of single charge carriers. As a starting point, the canonical quantum me-
chanics problem of the particle-in-a-box can be used to illustrate the con®nement of charge carriers in
quantum devices. The energy and wave function of the particle-in-a-box ground state for a ®nite potential
well are shown schematically in Fig. 1.

In real quantum devices, the potential barriers forming the well are provided primarily by either free
surfaces, which impose essentially in®nite con®nement, or by sharply layered compositional di�erences. In

Fig. 1. A particle is con®ned to the potential well region and is characterized by energy En and wave function Wn. The spatial

probability density of the location of the particle is given by jWnj2.
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the SiGe system, for example, the valence bands of uniform bulk Si and Ge are shifted in energy by 0:46 eV.
Thus, valence band charge carriers or holes in a Si layer of a device, experience a con®ning potential of 0:46
eV when surrounded by layers of Ge. This is a composition-based potential di�erence. Additional sources
of potential in real heterostructures include applied voltage and elastic strain; it is the latter which is the
primary focus of the work here. From deformation potential theory, the strain due to lattice mismatch,
typically as large as several percent in magnitude, can be expected to induce potentials as large as 0:1 eV.
Such a potential di�erence is signi®cant compared to the composition based potential di�erences.

By adopting this continuum view of con®nement in semiconductor quantum devices, the spectrum of
con®ned states available to individual electrons or holes can be characterized by the steady state Schr�o-
dinger equation, given by

H ab�~r�Wb�~r� � V ab�~r�Wb�~r� � EWa�~r�; �1�
where H ab is the Hamiltonian function coupling the energy of a charge carrier between energy bands a and b,
Wb is the quantum mechanical wave function associated with energy band b, V ab is an e�ective potential ®eld
coupling energy bands a and b, and E is the energy of a particular quantum mechanical state. Repeated
Greek indices imply a summation over the energy band degrees of freedom, and~r is the position vector
throughout the solid. Analysis of con®nement in a device is thus reduced to the study of an eigenvalue
problem, where the unknown wave function Wa is the eigenvector and the corresponding energy E is the
eigenvalue. The solution of the problem depends on boundary conditions; free surfaces impose the physical
requirement that Wa � 0 for all a. Conditions on boundaries that are remote from regions of interest in the
device do not signi®cantly a�ect energies or wave functions in regions of interest that are solutions to Eq. (1).

In order to proceed with the formulation of the boundary value problem, a quantum mechanical basis
spanning the energy bands a and b must be chosen. In the case of the common material combination
SixGe1ÿx, which will be considered here, an appropriate quantum mechanical basis includes the highest
energy valence subbands. This basis consists of the two degenerate heavy hole subbands and the two de-
generate light hole subbands, in reference to the relative masses of the charge carriers when treated as
classical particles. This choice of basis is su�cient because con®nement in this material system occurs
primarily in the valence band, and coupling between the highest energy valence subbands and other sub-
bands in the material is very weak due to the large energy separation. The choice of the quantum me-
chanical basis, then, determines the tensor form of the Hamiltonian H ab�~r� and the potential ®eld V ab�~r�.

2.1. Hamiltonian function

The behavior of a charge carrier in various energy subbands in the presence of the periodic crystalline
potential ®eld is described by the Hamiltonian function. The well known k � p Hamiltonian of Kohn and
Luttinger uses perturbation theory to describe semiconductor band structure away from wavevector k � 0
(Singh, 1993). This Hamiltonian can be used to model the medium in a SixGe1ÿx structure using a four
valence subband basis. The form of the k � p Hamiltonian is given by

H ab
k�p�~r� � ÿ

�h2

2m0

Lab
ij �~r�r2

ij; �2�

where �h is Planck's constant, m0 is the free electron mass, and the repeated indices indicate a summation
over spatial coordinates. For a and b ranging over the four valence subbands referred to as h�, hÿ, l�, and
lÿ, the matrices Lab

ij �~r� are given by

Lh�h�
ij �~r� � Lhÿhÿ

ij �~r� �
�c1 � c2� 0 0

0 �c1 � c2� 0
0 0 �c1 ÿ 2c2�

24 35;
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Ll�l�
ij �~r� � Llÿlÿ

ij �~r� �
�c1 ÿ c2� 0 0

0 �c1 ÿ c2� 0
0 0 �c1 � 2c2�

24 35;

Lh�l�
ij �~r� � Ll�h��

ij �~r� � ÿLhÿlÿ�

ij �~r� � ÿLlÿhÿ
ij �~r� �

0 0 ÿi
���
3
p

c3

0 0 ÿ ���
3
p

c3

ÿi
���
3
p

c3 ÿ ���
3
p

c3 0

24 35;

Lh�lÿ
ij �~r� � Lhÿl��

ij �~r� � Ll�hÿ
ij �~r� � Llÿh��

ij �~r� �

���
3
p

c2 ÿi
���
3
p

c3 0
ÿi

���
3
p

c3 ÿ ���
3
p

c2 0
0 0 0

2664
3775;

Lh�hÿ
ij �~r� � Lhÿh�

ij �~r� � Ll�lÿ
ij �~r� � Llÿl�

ij �~r� �
0 0 0
0 0 0
0 0 0

24 35; �3�

where c1, c2, and c3 are the Luttinger±Kohn parameters. These material parameters for Si and Ge, as well as
additional details on the form of Lab

ij �~r�, are given in Appendix A.

2.2. Spatially varying potential ®eld

The nonuniform potential ®eld V ab�~r� includes all energetic e�ects on the charge carrier due to sources
other than the background periodic crystalline potential. In the analysis presented here, the e�ects to be
considered include the relative o�set of the valence band in adjacent layers of the heterostructure, and the
e�ect of the elastic strain ®eld. The potential ®eld can be written as the sum of these two contributions, so
that

V ab�~r� � V ab
band�~r� � V ab

strain�~r�: �4�
Other e�ects can also be considered including, for example, the e�ect of a piezoelectric potential induced by
strain. This e�ect is not expected to be signi®cant here, nor is the e�ect of the correction of the total po-
tential V ab�~r� for self-consistency.

The band structure contribution V ab
band�~r� to the total potential is due to the energy misalignment of the

valence band maxima in adjacent layers of material, which is proportional to the Si concentration in a
SixGe1ÿx structure. In this material system, the conduction band minima are known to coincide in energy,
so that the valence bands are misaligned by the entire bandgap o�set energy, DEbg � ESi

bg ÿ EGe
bg . Thus, for

a valence band model in the SixGe1ÿx system, the value of this contribution to the potential is given by

V ab
band�~r� � x�~r�DEbg; a � b;

V ab
band�~r� � 0; a 6� b; �5�

where x�~r� is the Si concentration as a function of position.
Elastic strain in the structure induces a potential that shifts and couples the energy bands in the crystal.

Based on deformation potential theory, the calculated strain tensor �ij can be used to generate a potential
by means of the operation

V ab
strain�~r� � Dab

ij �~r��ij�~r� �6�
in which Dab

ij , for a � b, imposes a strain induced shift in the potential V ab
strain�~r� and, for a 6� b, imposes

strain induced band coupling. The form of Dab
ij �~r� is similar to the form of Lab

ij �~r� given in Eq.(3). The
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components of Dab
ij �~r� can be obtained from the components of Lab

ij �~r� by means of the variable substitu-
tions: ��h2=2m0�c1 $ a, ��h2=m0�c2 $ b, � ���3p �h2=m0�c3 $ d, where a, b, and d are material constants. These
constants have been compiled from experimental measurements and can also be predicted on the basis of
®rst principles calculations. Values of the material constants used to characterize Si and Ge, and some
additional details about the form of the deformation potential tensor Dab

ij �~r� and the Hamiltonian function
H ab

k�p�~r�, are given in Appendix A.

3. Finite element formulation

The nonuniform steady state Schr�odinger equation (1), which governs the behavior of individual charge
carriers in strained devices, is in the form of the Helmholtz equation. Like the linear elastic wave equation
for harmonic wave motion, it can be cast into a variational framework which serves as the basis for a
standard boundary value problem using the ®nite element method.

3.1. Variational formulation of the governing equation

The form of the Schr�odinger equation to be solved is

ÿ �h2

2m0

Lab�~r�r2Wb�~r� � V ab�~r�Wb�~r� � EWa�~r�: �7�

The weak form of the equation is obtained by forming the inner product of each term in the equation with
the wave function vector ®eld Wa�~r� and integrating over the volume of the body. The ®rst term is inte-
grated by parts, and the functional corresponding to the weak form is given by

P�Wa� � ÿ �h2

2m0

Z
R
rWaLabrWb dR�

Z
R

WaV abWb dRÿ E
Z

R
WaWb dR: �8�

Eq. (7) is the Euler equation which results from the requirement that Eq. (8) must be stationary under
variations in Wa. The body is then discretized into nodes and elements, so that spatially varying ®elds can be
expressed in terms of nodal values and element shape functions N�~r�. These ®elds are written as,

Wa �
Xall nodes

A�1

Wa
ANA�~r�; rWa �

Xall nodes

B�1

Wa
BrNB�~r�; V ab �

Xall nodes

C�1

V ab
C NC�~r�: �9�

The functional P�Wa� can then be approximated by the discrete form

P�Wa
A� �

ÿ�h2

2m0

Z
R

Wa
ArNALabWb

BrNB dR�
Z

R
Wa

ANAV ab
C NCWb

BNB dRÿ E
Z

R
Wa

AW
b
BNANB dR; �10�

where repeated capital Roman subscripts indicate a summation over all nodes. The quadratic function is
then rendered stationary with respect to the nodal values of the wave function Wb

B according to the con-
dition

dP�Wa
A�

dWb
B

� 0: �11�

The term containing the Hamiltonian represents kinetic energy while the term containing the nonuniform
potential represents potential energy. This condition on the wave function Wa

A leads to the equation
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Wa
A

�
ÿ �h2

2m0

Z
R
rNALabrNB dR�

Z
R

NAV ab
C NCNB dRÿ E

Z
R

NANB dR
�
� 0: �12�

The integrals over the region R can be replaced with integrals over individual element volumes (Xe) and a
summation over all elements in order to obtain the ®nite element form of the governing equation, which is
written asXelems Z

Xe

ÿ�h2

2m0

rNALabrNB

��
� NANBV ab

C NC

�
dX

�
Wb

B � E
Xelems Z

Xe

NANB dX

� �
Wa

B: �13�

The integration over each element volume (Xe) is done by Gaussian quadrature of a degree which is exact
for the shape functions selected. In the terminology of structural mechanics, the contribution of a single
element to the left-hand side of the equation is given by the element ``sti�ness'' matrix; contributions to the
right side of the equation are due to element ``mass'' matrices. For a problem with m spatial dimensions and
an n subband quantum mechanical basis, the element sti�ness and mass matrices have size m2n� m2n� �. The
element matrices are de®ned by,

ke
ab �

Xint:pts:

l�1

ÿ�h2

2m0

rNALabrNB

�
� NAV ab

C NCNB

�
l

;

me �
Xint:pts:

l�1

NANB� �l:
�14�

The ®nal ®nite element matrix form of the Schr�odinger equation is constructed by assembling the ele-
ment sti�ness and mass matrices into global sti�ness and mass matrices Kij and Mij, where i and j range over
all na global degrees of freedom, where n is the number of nodes and a is the number of energy subbands in
the quantum mechanical basis. The ®nite element formulation of the governing equation then takes the
form

KijWj � EMijWj; �15�
which, as a generalized eigenvalue problem, is ideally suited for computation. The unknown wave function
Wj is the eigenvector and the unknown energy E is the eigenvalue.

3.2. Spectrum of energies and wave functions

The ®nite element solution of the Schr�odinger equation consists of a spectrum of energies and corre-
sponding wave functions. There are na solutions, equal in number to the number of global degrees of
freedom in the system. For each solution with energy E, the corresponding wave function Wa has com-
ponents in each subband a. Some states consist predominantly of a single wave function component, while
other states have mixed wave function components.

In general, the lowest energy states or ground states, which are of the most practical interest in assessing
device properties of quantum semiconductor structures, will be determined with the greatest numerical
accuracy. Due to the low temperatures and operating voltages used in experiments, only these lower energy
con®ned states are needed for the analysis of real semiconductor quantum structures. Some accuracy is lost
in the numerical calculation of the excited states.

Furthermore, in studying devices that are based on quantum mechanical con®nement, it is only nec-
essary to consider a subset of the na solutions of the governing equation. Many eigenstates, in general,
represent steady state solutions in which the wave function is not con®ned to a region of interest in the
structure. At low energies, some of these nonlocalized states represent spurious numerical results due, for

1050 H.T. Johnson, L.B. Freund / International Journal of Solids and Structures 38 (2001) 1045±1062



example, to the choice of remote boundary conditions but which do not a�ect regions of interest in the
structure. Thus, it is necessary to examine only low energy states which are con®ned to the region of interest
in the structure.

4. Examples

Two SiGe quantum structures are analyzed as examples of the ®nite element technique. Both devices are
of particular interest because of the e�ects of strain, which is induced during the heteroepitaxial growth
process. The mismatch strain has consequences for the resulting morphology of the surface, and as is shown
here, for the electronic properties of the resulting devices. The continuum ®nite element approach is also
useful for evaluating the strong size e�ects on con®nement energies in the structures.

The electronic properties analysis for the quantum devices consists primarily of the determination
of con®nement energies. Due to the experimentally understood nature of energy band alignment in SiGe
heterostructures, the calculations in both examples are for valence band properties. The convention is
adopted whereby zero energy occurs at the common Si and Ge conduction band minimum, with energy
increasing towards the valence band, as illustrated in Fig. 2. The Ge valence band edge occurs at �0:66 eV
and the Si valence band edge occurs at �1:12 eV. A con®nement occurs in the energy range between 0:66 V
and 1:12 eV, with more (less) strongly con®ned states occurring at lower (higher) energies.

4.1. Faceted island quantum dot

The island growth mode in strained heteroepitaxy of thin ®lm systems has been the focus of intense
research lately because of possible quantum dot applications. The growth of islands on a substrate, also
known as the Stranski±Krastanow growth mode, has been identi®ed and understood in the SixGe1ÿx system
for at least the past decade (Eaglesham and Cerullo, 1990). It has been suggested more recently that this

Fig. 2. Schematic of the energy and sign convention adopted here. Con®ned states occur in the quantum well region and have energies

between 0:66 eV and 1:12 eV.
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type of surface morphology, originally thought to be defective, could be applied for the fabrication of
quantum dot arrays (Leonard et al., 1993).

From the work of Floro et al. (1997), it is known that the pyramid shaped Ge islands self assemble under
certain conditions during heteroepitaxy on Si substrates. The island faces are formed by distinctive [5 0 1]
crystallographic planes. The geometry, size and arrangement of the arrays of these islands are sensitive to
experimental conditions. The island sizes range in reported base width from less than 10 nm to over 100 nm;
this size scale is associated with potential quantum dot applications. The potential of these structures to be
used as quantum dots, as well as the e�ects of strain on the electronic properties of the structures, can be
assessed directly using the ®nite element technique presented here.

A three dimensional ®nite element mesh is ®rst set up for an individual isolated island. The same mesh
can be used in this case for calculating both the linear elastic strain ®eld and the spectrum of quantum
mechanical con®ned states. A portion of the mesh for a single [5 0 1] faceted Ge quantum dot is shown in
Fig. 3.

The lateral size of the substrate in the full ®nite element mesh is approximately �3w� 3w�, with a
substrate thickness of approximately w, where w is the island width. These dimensions are assumed to
approximate the case of an isolated island. The height of the island, ®xed by the geometry of the [5 0 1]
surfaces, is w=10. With the substrate size large, compared to the island size, both linear elastic ®elds and
quantum mechanical wave functions are relatively insensitive to remote boundary conditions.

The linear elasticity boundary value problem, arising from the mismatch in lattice parameters between
the island and substrate materials, is solved using a standard structural mechanics ®nite element package
(ABAQUSABAQUS, 1997). The lattice mismatch is a�ected by applying a uniform expansion in the island material
equal to the lattice parameter mismatch, by requiring displacement compatibility across the island/substrate
interface, and then by allowing the system to relax to a minimum energy con®guration. This approach is
comparable to the shrink-®t or Eshelby inclusion approach, whereby a stress free transformation strain
is applied to a region by means of arti®cial tractions. The strain relaxation which occurs as the arti®cial
tractions are removed must be accommodated by the surrounding material (Eshelby, 1957). All outer
boundaries of the mesh are considered to be traction free surfaces in this case.

A resulting lateral extensional strain component in the island is shown in Fig. 4. Because the material is
assumed to be isotropic, the strain ®elds are symmetric with respect to the lateral directions. However, the
strain ®eld is nonuniform as a result of the relaxation of the island free surfaces. The region near the base of
the island is strained nearly to the level of the system mismatch of approximately four percent. The island
apex, however, is almost strain free due to the proximity of the free surfaces.

The quantum mechanical calculation is then formulated to include the e�ects of the linear elastic strain
®elds. In this case, the quantum mechanical basis for the [5 0 1] Ge island is taken to be a single heavy hole
valence subband. Because of the full three dimensional geometry of the structure, this reduced basis is

Fig. 3. Finite element mesh for the region near a [5 0 1] Ge island on a Si substrate. The island edges are outlined for clarity.
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chosen in order to limit the number of degrees of freedom which must be considered. This substantially
reduces the cost of the computation but at some expense to the basic physical model. Strain induced band
mixing, which may be physically signi®cant in this case, is neglected as a result of this assumption. Due to
the choice of the single subband basis, the potential ®eld becomes scalar valued. A cross-sectional view of
the strain e�ects on the potential ®eld is shown in Fig. 5. While the primary source of the relative con®ning
potential in the Ge island is the o�set in the valence band maxima between Ge and Si of 0:46 eV, mismatch
strain also has an important e�ect. Strain locally increases the potential near the base of the island, which is
highly strained, and reduces the potential near the apex and edges of the island, where the strain is mostly
relaxed. It is worth noting that the potential in the substrate is also a�ected by the strain ®eld, because the
wave function for a given state may not be completely con®ned to the ®lm.

The nonhomogeneous Schr�odinger equation is then solved using the ®nite element method, formulated
to include three spatial dimensions and one quantum mechanical dimension which, in this case, is taken to
be the heavy hole valence subband. The components of the e�ective mass tensor for this energy band basis
are given in Appendix A. The solution yields a spectrum of eigenstates for the single subband. Con®ned

Fig. 4. Lateral extensional component of strain in a [5 0 1] Ge island. The substrate is nearly unstrained, the base of the island is highly

compressively strained, and the strain at the apex of the island is mostly relaxed by the free surfaces.

Fig. 5. Potential ®eld in a [5 0 1] Ge island on a Si substrate. The primary potential di�erence is due to the relative valence band o�set in

Ge with respect to Si; mismatch strain also a�ects the potential.
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states, with energies falling between the valence band maximum energy in bulk Ge and the valence band
maximum energy in bulk Si, are observed in some islands.

Probability density pro®les, given by the square of the wave function ®elds, for the two lowest energy
states in an island with base width of 30 nm, are shown in Fig. 6. The linear elastic strain ®elds, and thus the
scalar potential ®elds, are independent of island width for ®xed island shape, but con®nement is nonetheless
strongly dependent on island width. For example, no con®ned states are observed in islands of width less
than 10 nm, which is within the range of experimentally observed island sizes. For islands of width greater
than approximately 50 nm, which is also within the range of experimentally observed sizes, there are
hundreds of con®ned states, with the largest energy separation being less than 10 meV. Smaller energy
separations between con®ned states are generally less desirable in practical applications due to the di�culty
in measuring small energy di�erences. The e�ects of island size on the spectra of con®ned states are
summarized in Fig. 7.

Finally, the addition of strain e�ects in the ®nite element model of the Schr�odinger equation is shown to
signi®cantly a�ect con®nement energies. Strain e�ects lead to higher con®nement energies, characteristic of
smaller islands in an unstrained case, but smaller separation energies, characteristic of larger islands in an
unstrained case. Fig. 8 shows the direct e�ect of strain on the energies of con®ned states in a 20 nm island.
The reduction of the energy of separation between states has potentially signi®cant experimental impli-
cations, particularly in some optical applications, for example, where precise control over con®nement
energies is needed to optimize device output.

4.2. V-groove quantum wire

A number of experimental and theoretical studies have been reported recently on semiconductor
structures referred to as quantum wires (Brinkmann et al., 1996; Yang et al., 1997; Faux et al., 1997). In the
literature, long narrow structures with lateral dimensions of less than a micron are often given this label.
There are many proposed techniques for fabricating the structures, including the intriguing possibility of
self-assembly. Various other techniques rely on lithography.

Fig. 6. Probability density ®elds for lowest two heavy hole states in a 30 nm island. The states are almost entirely con®ned to the island

region, and are separated in energy by 60 meV.
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One promising method for producing quantum wire structures uses a chemical etch technique to pattern
v-shaped grooves into the surface of a semiconductor substrate. Epitaxial ®lm material is then deposited
into the grooves. Due to the energy band misalignment e�ect between the ®lm and substrate materials, and
very small dimensions of the structure, quantum con®nement in the lateral direction is expected, while
charge is free to move in the longitudinal direction. A cross sectional schematic view of two v-groove
quantum wires is shown in Fig. 9. In addition to energy band misalignment, in some cases the ®lm and
substrate materials have mismatched lattice parameters, as in the case of Ge wires in a Si substrate. The
constraint across the interface results in nonuniform strain which has an additional e�ect on the quantum
mechanical con®nement.

The case of a strained Ge quantum wire in a Si substrate is considered here. As was done for the case of
an island, a single ®nite element mesh is used to model the cross section of an isolated v-groove wire, for
both the linear elasticity and quantum mechanics calculations. The con®guration consists of a large Si

Fig. 7. Con®ned states in Ge islands as a function of island width. Many states are available in islands of 50 nm or larger, but the

energy spacing may be experimentally insigni®cant. In islands of 10 nm or less, no con®nement is observed. In 20 nm islands, con®ned

states are seen at only two energies, separated by 75 meV, with the ground state at 1030 meV from the bulk Ge valence band energy.

Fig. 8. E�ect of strain on con®nement energies in a 20 nm island. Energies of both con®ned states are increased by strain, and the

energy of separation is reduced by 10 meV.
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substrate region, extending several times the wire width in all directions, and a Ge wedge shaped ®lm re-
gion, with side faces along [1 1 0] planes and the top surface along a [1 0 0] plane.

Both the linear elasticity problem and the quantum mechanical problem can be modeled completely
using this two-dimensional representation, due to the fact that the wire is much longer than it is wide. This
feature allows the elasticity problem to be reduced to the case of plane strain, and the quantum mechanical
problem to be reduced to the case of a free particle, with the appropriate e�ective mass, in the direction
normal to the cross section.

The linear elasticity problem of solving for the mismatch induced nonuniform strain ®eld is accom-
plished using the general purpose ®nite element code ABAQUSABAQUS. A uniform dilatation, in the amount of the
lattice mismatch, is imposed on the Ge wire material, and then displacement compatibility is imposed
across the Ge/Si interface. The system reaches an equilibrium, and due to the free surface relaxation e�ect,
the strain ®eld is nonuniform. The lateral extensional component of strain in the structure is shown in
Fig. 10.

Because the problem can be handled using a two dimensional spatial basis, it is then possible to manage
the additional computational cost of adopting a four-subband quantum mechanical basis. The basis used
here, as is common for the Ge/Si material system, includes the two degenerate heavy hole valence subbands
and the two degenerate light hole valence subbands. With this basis, there are four components of the
potential ®eld that must be calculated. The potential ®eld components are shown in Fig. 11. For ®xed
geometry, these potential ®eld components are independent of the wire size due to the use of linear elasticity
for the solution of the strain ®eld.

Fig. 9. The two parallel v-groove quantum wires are fabricated by epitaxially depositing ®lm material into grooves etched in the

substrate.

Fig. 10. The four percent mismatch between the ®lm and substrate material results in a nonuniform strain ®eld in and near the v-groove

quantum wire. The lateral extensional strain is highly compressive near the top corners of the wire, while the strain is tensile in the

bottom of the groove.
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As in the analysis of the quantum dot, the solution of the Schr�odinger equation for the v-groove
quantum wire consists of a spectrum of energies and associated wave functions. Due to the choice of the
four subband basis in this case, however, the wave function is vector valued, with components in each of the
subbands. The k � p Hamiltonian leads to eigenstates with components in both the heavy hole and light hole
subbands. Strain lifts the degeneracy of the subbands, and it also energetically separates heavy hole states
from light hole states. Representative wave functions in the four subbands for a low energy con®ned state in
a wire of width w � 10 nm are shown in Fig. 12. The energy state has major components in heavy hole and
light hole subbands. However, in the analyses presented here, because of the relatively coarse discretization
of the wire region, limited information can be obtained about the spatial form of the wave functions for
excited states.

Some conclusions can be drawn about con®nement energies in the wires. First, it is straightforward to
examine the e�ect of wire width on the spectrum of con®ned states. The smallest wires considered, with
width w � 10 nm, have reasonably large energy separation between con®ned states, on the order of 100
meV. Larger structures have much more closely spaced con®nement energies which would be indistin-
guishable experimentally. The spectra of con®ned states for two wires, with width of 10 and 25 nm, are
shown in Fig. 13. The di�erence in size between the two wires has a signi®cant e�ect on con®nement en-
ergies. Con®nement energies for the lowest states in the wire of width 25 nm are roughly 10 meV; higher
energy con®ned states are essentially continuous. The energies separating con®ned states in a wire as large
as 100 nm would be practically negligible.

Strain e�ects on con®nement energies are relatively large in the v-groove wires. By removing the strain
induced contribution to the nonuniform potential, it can be shown that the presence of the strain tends to
reduce the con®nement energies of most states for this structure. Fig. 14 shows con®nement spectra for the

Fig. 11. The two upper plots are components of the potential that directly a�ect states in the heavy hole and light hole subbands, and

are due to the superposition of band o�set contributions and strain contributions. The lower plots are potentials that couple the

subbands, and are due only to strain. Energies are in units of eV.
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wire of width w � 10 nm both with and without considering the strain e�ects. The strain ®eld a�ects the
higher energy states more strongly, and near the upper limit of the energy range, additional states are con-
®ned by the strain.

Fig. 12. A con®ned state in a v-groove quantum wire of width w � 10 nm has major wave function components in two of the four

heavy hole and light hole subbands.

Fig. 13. Con®nement energies in the w � 10 nm v-groove quantum wire are on the order of 100 meV. Con®ned states are much more

closely spaced in the w � 25 nm wire; higher energy con®ned states practically appear continuous.
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5. Conclusions

The analysis of electronic properties of strained semiconductor structures is reduced here to the solution
of a linear boundary value problem, for which an approximate solution is readily found by means of the
®nite element method. The ®nite element approach is based on a variational formulation of the time in-
dependent Schr�odinger equation. While the quantum mechanical model neglects some features of the
physical problem, the ease of use of the ®nite element method for solving the governing equations makes
the method an attractive way of probing basic energetics in structures that are based on quantum con-
®nement. Due to the concept of the linear superposition of the sources of e�ective potential on the single
charge carrier, it is possible in the analysis to isolate the e�ects of strain, which is important in under-
standing the large class of devices consisting of lattice mismatched heterostructure materials.

The two speci®c structures considered here vary in both the number of the spatial dimensions and in the
size of the quantum mechanical basis. The [5 0 1] island quantum dot analysis requires a full three di-
mensional analysis for both the elasticity problem (although some symmetry can be exploited) and the
quantum mechanics problem. Due to the large number of nodal degrees of freedom required, it is more
practical then to consider only a single subband quantum mechanical model. In the case of the v-groove
quantum wire, where both the linear elasticity problem and the quantum mechanics problem were essen-
tially two dimensional, it is not di�cult to consider a four subband basis, which allows for the study of
strain induced band mixing. These problems are computationally e�cient; all calculations reported here
were performed on a DEC Alpha workstation.

Spectra of con®ned electronic states are calculated for both structures. Strain e�ects can be isolated from
the e�ects of relative bandgap o�sets in the material, and it is shown that strain changes the energy sep-
aration of con®ned states that may be experimentally accessible. Furthermore, studies of the e�ects of
device size on con®nement can be carried out simply by scaling nodal coordinates in the quantum me-
chanics ®nite element analysis. It is shown that for both the [5 0 1] pyramidal quantum dot and the v-groove
quantum wire there is a narrow range of sizes in which the con®ned states are likely to be useful in real
devices. In the pyramidal quantum dot, for example, it is found that the base width of the SiGe islands

Fig. 14. The addition of the strain contribution to the potential has a stronger e�ect on higher energy con®ned states in the w � 10 nm

v-groove quantum wire. Additional states are con®ned simply due to the strain ®eld.
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should be in the range of 10±50 nm in order for con®ned heavy hole valence band states to be most useful.
In the v-groove quantum wires, which would be expected to be most useful with a width of approximately
10 nm, strain is found to induce band mixing, to more strongly a�ect the energies of the more excited
con®ned states, and to actually lead to the presence of additional con®ned states.

For the structures considered here, the scaling of the features does not a�ect the linear elastic strain
®elds. Thus, the inferred useful size ranges for the devices are based purely on quantum mechanical e�ects.
However, in structures with sizes that are characterized by multiple physical length scales, the scaling of
structural features can also a�ect strain ®elds (Johnson et al., 1998). For example, pyramidal islands of
varying base widths but ®xed volume, without the restriction of [5 0 1] faceted sides, would have size de-
pendent strain ®elds. This additional e�ect on con®nement energies in devices could also be probed using
the approach presented here.

The analysis of strain e�ects in semiconductor quantum structures is achieved here using a computa-
tionally e�cient and practical continuum ®nite element approach. Similar modeling with better quantum
mechanical accuracy is possible using fully atomistic approaches. However, the wide range of structures
and devices of all sizes that can be considered using this approach make the technique a useful tool. The
realistic SiGe structures considered here exhibit strong coupling of strain and electronic properties; pre-
dictive modeling of this phenomenon is important in the design and interpretation of future experimental
work.
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Appendix A

The strain induced potential V ab
� �~r� is given by

�A:1�

where each component Dab
ij �~r� of the matrix for ®xed ab forms a scalar product with the strain tensor �ij�~r�

through summation over i and j. And similarly, the k � p Hamiltonian given by Luttinger and Kohn takes
the form

�A:2�
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where each of the matrix components Lab
ij �~r� for ®xed ab forms a scalar product with the operator r2

ij. The
components Dab

ij �~r� and Lab
ij �~r� have very similar form. The deformation potential components Dab

ij �~r� are

D11
ij �~r� � D22

ij �~r� �
a� b

2
0 0

0 a� b
2

0
0 0 aÿ b

24 35;

D33
ij �~r� � D44

ij �~r� �
aÿ b

2
0 0

0 aÿ b
2

0
0 0 a� b

24 35;

D13
ij �~r� � D31�

ij �~r� � ÿD24�
ij �~r� � ÿD42

ij �~r� �
0 0 ÿi d

2

0 0 ÿ d
2ÿi d

2
ÿ d

2
0

24 35;

D14
ij �~r� � D23�

ij �~r� � D32
ij �~r� � D41�

ij �~r� �
��
3
p
2

b ÿi d
2

0

ÿi d
2
ÿ
��
3
p
2

b 0
0 0 0

24 35;

D12
ij �~r� � D21

ij �~r� � D34
ij �~r� � D43

ij �~r� �
0 0 0
0 0 0
0 0 0

24 35; �A:3�

where a, b and d are material constants. The Hamiltonian components Lab
ij �~r� can be obtained by making

the substitutions ��h2=2m0�c1 $ a, ��h2=m0�c2 $ b, � ���3p �h2=m0�c3 $ d into the expressions for the components
Dab

ij �~r�, where c1, c2, c3 are the Luttinger±Kohn parameters. Values for the deformation potential constants
and the Luttinger±Kohn parameters for Si and Ge are given in the table below, taken from experimental
measurements. Values for alloys of Si and Ge are interpolated from values for the bulk materials by means
of the linear rule of mixtures.

For cases in which the heavy hole and light hole valence subbands are assumed to be decoupled, the
Hamiltonian function is of the form

H�~r� � Lijr2
ij; �A:4�

where the components of the tensor Lij contain the e�ective masses associated with the principle crystal-
lographic directions, and are written for the heavy hole case as

L11 � �h2

2m0

�c1 � c2�; L22 � �h2

2m0

�c1 � c2�; L33 � �h2

2m0

�c1 ÿ 2c2� �A:5�

and for the light hole case as

L11 � �h2

2m0

�c1 ÿ c2�; L22 � �h2

2m0

�c1 ÿ c2�; L33 � �h2

2m0

�c1 � 2c2�: �A:6�

a (eV) b (eV) d (eV) c1 c2 c3

Si 2.1 ÿ1.5 ÿ3.4 4.29 0.34 1.45

Ge 2.0 ÿ2.2 ÿ4.4 13.4 4.24 5.59
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